廠商-昭通水壩閘門查看水閘,按其所承擔(dān)的主要任務(wù),可分為:節(jié)制閘、進(jìn)水閘、沖沙閘、分洪閘、擋潮閘、排水閘等水壩閘門按閘室的結(jié)構(gòu)形式,可分為:開(kāi)敞式、胸墻式和涵洞式(圖1)。開(kāi)敞式水壩閘門水閘當(dāng)閘門全開(kāi)時(shí)過(guò)閘水流通暢,適用于有、排冰、過(guò)木或排漂浮物等任務(wù)要求的水閘,節(jié)制閘、分洪閘常用這種形式。胸墻式水閘和涵洞式水閘,適用于閘上水位變幅較大或擋水位高于閘孔設(shè)計(jì)水位,即閘的孔徑按低水位通過(guò)設(shè)計(jì)流量進(jìn)行設(shè)計(jì)的情況。胸墻式的閘室結(jié)構(gòu)與開(kāi)敞式基本相同,為了閘門和工作橋的高度或?yàn)榭刂葡滦箚螌捔髁慷O(shè)胸墻代替部分閘門擋水,擋潮閘、進(jìn)水閘、泄水閘常用這種形式。如葛洲壩泄水閘采用12m×12m活動(dòng)平板門胸墻,其下為12m×12m弧形工作門,以適應(yīng)必要時(shí)大流量的需要。涵洞式水閘多用于穿堤引(排)水,閘室結(jié)構(gòu)為封閉的涵洞,在進(jìn)口或出口設(shè)閘門,洞頂填土與閘兩側(cè)堤頂平接即可作為路基而不需另設(shè)交通橋,排水閘多用這種形式。


廠商-昭通水壩閘門查看水閘由閘室、上游連接段和下游連接段組成(圖2)。閘室是水閘的主體,設(shè)有底板水壩閘門閘門、 啟閉機(jī)、閘墩、胸墻、工作橋、交通橋等。閘門用來(lái)?yè)跛涂刂七^(guò)閘流量,閘墩用以分隔閘孔和支承閘門、胸墻、工作橋、交通橋等。底板是閘室的基礎(chǔ),將閘室上部結(jié)構(gòu)的重量及荷載向地基傳遞,兼有防滲和防沖的作用。閘室分別與上下游連接段和兩岸或其他建筑物連接。上游連接段包括:在兩岸設(shè)置的翼墻和護(hù)坡,在河床設(shè)置的防沖槽、護(hù)底及鋪蓋,用以引導(dǎo)水流平順地進(jìn)入閘室,保護(hù)兩岸及河床免遭水流沖刷,并與閘室共同組成足夠長(zhǎng)度的滲徑,確保滲透水流沿兩岸和閘基的抗?jié)B性。下游連接段,由消力池、護(hù)坦、 海漫、 防沖槽、兩岸翼墻、護(hù)坡等組成,用以引導(dǎo)出閘水流向下游均勻擴(kuò)散,減緩流速,過(guò)閘水流剩余動(dòng)能,防止水流對(duì)河床及兩岸的沖刷。


水壩閘門水閘關(guān)門擋水時(shí),閘室將承受上下游水位差所產(chǎn)生的水平推力,使閘室有可能向下游。水壩閘門閘室的設(shè)計(jì),須保證有足夠的抗滑性。同時(shí)在上下游水位差的作用下,水將從上游沿閘基和繞過(guò)兩岸連接建筑物向下游滲透,產(chǎn)生滲透壓力,對(duì)閘基和兩岸連接建筑物的不利,尤其是對(duì)建于土基上的水閘,由于土的抗?jié)B性差,有可能產(chǎn)生滲透變形,危及工程安全,故需綜合考慮閘址地質(zhì)條件、上下游水位差、水壩閘門閘室和兩岸連接建筑物布置等因素,分別在閘室上下游設(shè)置完整的防滲和排水,確保閘基和兩岸的抗?jié)B性。開(kāi)門泄水時(shí),閘室的總凈寬度須保證能通過(guò)設(shè)計(jì)流量。閘的孔徑,需按使用要求、水壩閘門閘門形式及考慮工程投資等因素選定。由于過(guò)閘水流形態(tài)復(fù)雜,流速較大,兩岸及河床易遭水流沖刷,需采取有效的消能防沖措施。對(duì)兩岸連接建筑物的布置需使水流進(jìn)出閘孔有良好的收縮與擴(kuò)散條件。建于平原地區(qū)的水閘地基多為較的土基,承載力小,壓縮性大,在水閘自重與外荷載作用下將會(huì)產(chǎn)生沉陷或不均勻沉陷,閘室或翼墻等下沉、傾斜,甚至引起結(jié)構(gòu)斷裂而不能正常工作。為此,對(duì)閘室和翼墻等的結(jié)構(gòu)形式、布置和基礎(chǔ)尺寸的設(shè)計(jì),需與地基條件相適應(yīng),盡量使地基受力均勻,并控制地基承載力在允許范圍以內(nèi),必要時(shí)應(yīng)對(duì)地基進(jìn)行妥善處理。對(duì)結(jié)構(gòu)的強(qiáng)度和剛度需考慮地基不均勻沉陷的影響,并盡量相鄰建筑物的不均勻沉陷。此外,對(duì)水閘的設(shè)計(jì)還要求做到結(jié)構(gòu)簡(jiǎn)單、經(jīng)濟(jì)合理、造形美觀、便于施工、,以及有利于綠化等。

廠商-昭通水壩閘門查看隨著城市人口的快速增長(zhǎng)及社會(huì)經(jīng)濟(jì)的快速發(fā)展,城市用水需求不斷增長(zhǎng),致使發(fā)展性缺水、季節(jié)性缺水和水質(zhì)性缺水等問(wèn)題成為很多大型城市發(fā)展所面臨的巨大挑戰(zhàn)。水資源短缺已成為制約社會(huì)與經(jīng)濟(jì)可發(fā)展的瓶頸因素之一,為了城市發(fā)展的可性,以"開(kāi)源節(jié)流"為方向開(kāi)展城市供水的性研究將是突破城市"供水瓶頸"的重要途徑。城市供水的跨流域引水,即為"開(kāi)源"的工程措施,可調(diào)水區(qū)的徑流量:而水資源的調(diào)度屬于"節(jié)流"的非工程措施,實(shí)現(xiàn)水資源配置和調(diào)度。對(duì)水庫(kù)群制定科學(xué)合理的引水與供水調(diào)度規(guī)則,能夠有效發(fā)揮域引水及本地水資源的配置功能,可達(dá)到全流域水資源"配置、多源互補(bǔ)、保障發(fā)展"的目標(biāo)。因此,本文針對(duì)跨流域引水及供水水庫(kù)群開(kāi)展調(diào)度研究,具有十分重要的理論意義和應(yīng)用價(jià)值,其研究成果可為跨流域水資源的利用提供決策支持和科學(xué)依據(jù)。本論文以深圳市西部引水及供水水庫(kù)群為研究對(duì)象,以解決跨流域引水及供水調(diào)度的關(guān)鍵性問(wèn)題為目的水工弧形閘門是重要的擋水和泄水建筑物,其安全對(duì)整個(gè)樞紐至關(guān)重要。但由于閘門屬于薄壁輕質(zhì)結(jié)構(gòu),在動(dòng)水荷載下容易發(fā)生振動(dòng),對(duì)閘門動(dòng)力特性的研究顯得十分必要。閘門面板承受動(dòng)水荷載作用,然后通過(guò)支臂和支鉸將水壓力傳給閘墩,所以閘門振動(dòng)要受到水體和閘墩的影響。而且,閘后不同泄流條件,如淹沒(méi)出流和出流,閘門振動(dòng)響應(yīng)又不盡相同,所以閘門振動(dòng)是復(fù)雜的流激振動(dòng)問(wèn)題。物理模型試驗(yàn)和數(shù)值計(jì)算結(jié)果可以對(duì)比驗(yàn)證,確保兩者的正確性,所以試驗(yàn)和數(shù)模相結(jié)合是一種研究閘門振動(dòng)的有效。本文結(jié)合瀾滄江里底水電站底孔弧形工作閘門,通過(guò)試驗(yàn)和數(shù)值計(jì)算對(duì)其流激振動(dòng)特性進(jìn)行了研究,并進(jìn)行支臂設(shè)計(jì)。主要研究?jī)?nèi)容如下:(1)根據(jù)模型試驗(yàn)原理和要求,選擇水彈性材料,按一定的幾何比尺設(shè)計(jì)了閘門水力學(xué)和水彈性模型,進(jìn)行了閘門荷載量測(cè)和流激振動(dòng)響應(yīng)試驗(yàn),并分析試驗(yàn)結(jié)果。(2)利用ANSYS建立水體-閘門-閘墩耦合數(shù)值模型,將物理模型試驗(yàn)結(jié)果與數(shù)值計(jì)算結(jié)果進(jìn)行了對(duì)比現(xiàn)行的鋼閘門設(shè)計(jì)規(guī)范中有兩種結(jié)構(gòu)計(jì)算:平面體系和空間體系。過(guò)去對(duì)閘門的結(jié)構(gòu)計(jì)算通常采用平面體系,由于不能反映結(jié)構(gòu)的空間效應(yīng)使計(jì)算結(jié)果誤差比較大。如在一些地方比實(shí)測(cè)值大,造成不必要的材料浪費(fèi),而在一些關(guān)鍵部位又有可能偏小,危及整個(gè)結(jié)構(gòu)的安全;特別是深孔鋼閘門具有很強(qiáng)的空間效應(yīng),各個(gè)構(gòu)件截面尺寸大聯(lián)系緊密,共同協(xié)調(diào)工作。而平面體系法實(shí)際上恰恰是把一個(gè)空間承重結(jié)構(gòu)劃分成幾個(gè)的平面結(jié)構(gòu),割裂了構(gòu)件之間的協(xié)調(diào)性,說(shuō)明該顯然是不合理的。因此,有必要對(duì)閘門特別是深孔鋼閘門這種特殊結(jié)構(gòu)的結(jié)構(gòu)特性、力學(xué)機(jī)理做深入的分析,弄清楚每一構(gòu)件的受力特點(diǎn)及薄弱環(huán)節(jié),改進(jìn)計(jì)算,充分利用其空間體系的整體工作特點(diǎn),科學(xué)合理地配置材料及構(gòu)件,用少量的材料來(lái)閘門的整體安全度。考慮以上問(wèn)題,本文從以下幾個(gè)方面做了研究和總結(jié):(1)本文通過(guò)對(duì)現(xiàn)有的平面體系法(規(guī)范中規(guī)定的計(jì)算和研究人員做過(guò)的其他平面體系法)的分析總結(jié),指出其不足和. 弧形鋼閘門被廣泛的應(yīng)用于水工建筑物中,由于其結(jié)構(gòu)和工作條件的復(fù)雜性,使得其在工程運(yùn)用中存在著諸多安全性問(wèn)題。對(duì)弧形閘門結(jié)構(gòu)進(jìn)行動(dòng)力特性、流激振動(dòng)方面的研究具有重要的工程價(jià)值和理論意義。本文基于這些方面的問(wèn)題,以龍灘底孔弧形閘門為背景,研究了弧形閘門的動(dòng)力特性和流激振動(dòng)問(wèn)題,研究手段以模型試驗(yàn)和有限元計(jì)算分析相結(jié)合。用水力學(xué)模型試驗(yàn)了作用在弧形閘門上的脈動(dòng)壓力數(shù)據(jù),研究了弧形閘門上的動(dòng)水壓力特性并得出一些普遍規(guī)律:在水彈性閘門模型上了各種工況下各測(cè)點(diǎn)的靜應(yīng)力、動(dòng)應(yīng)力、自振、加速度,研究了閘門上靜應(yīng)力的分布規(guī)律,弧形閘門的自振特性和動(dòng)力響應(yīng)。用ANSYS建立了龍灘弧門有限元模型,用有限元對(duì)弧門進(jìn)行了靜力計(jì)算,并與靜力試驗(yàn)結(jié)果對(duì)比,驗(yàn)證了兩種的可靠性,并進(jìn)一步研究了弧形閘門主要構(gòu)件的應(yīng)力分布規(guī)律和變形狀況。弧形閘門的流固耦合問(wèn)題是研究閘門動(dòng)力特性的一個(gè)難點(diǎn)。Westergaard(1933年)曾研究過(guò)地震時(shí)結(jié)構(gòu)失穩(wěn)是鋼結(jié)構(gòu)的重要形式。近年來(lái)結(jié)構(gòu)動(dòng)力失穩(wěn)問(wèn)題雖已有一些研究成果,但弧形鋼閘門動(dòng)力性問(wèn)題一直沒(méi)有得以解決。在國(guó)內(nèi),從上個(gè)世紀(jì)60 年始就有一些學(xué)者對(duì)弧形鋼閘門動(dòng)力性這一問(wèn)題進(jìn)行研究。他們研究發(fā)現(xiàn)閘門失事的原因很多,但有兩個(gè)共同特征值得注意:一是失事閘門全是因支臂喪失的,二是都在明顯的動(dòng)力荷載作用下發(fā)生。目前的研究成果還不能定量的得出梁柱剛度比、水深等因素對(duì)弧門主框架動(dòng)力性的影響關(guān)系。因?yàn)椋绊戦l門動(dòng)力性的因素很復(fù)雜,諸如閘門的、剛度分布情況、固有、力、流固耦合等等,這些因素都影響閘門的動(dòng)力性,所以,還需進(jìn)一步對(duì)弧形鋼閘門動(dòng)力性進(jìn)行研究。論文的主要研究工作與成果如下:1. 利用靜力平衡法、有限元法對(duì)三種形式平面鋼框架的靜力性問(wèn)題進(jìn)行分析,建立單柱概化平面框架(考慮各種邊界約束及失穩(wěn)模態(tài))整體性的計(jì)算通用模型,并給出了解析解和數(shù)值解。混凝土泵車作為一種建筑機(jī)械設(shè)備,在建筑行業(yè)內(nèi)具有廣泛的應(yīng)用。隨著現(xiàn)代化建設(shè)的不斷推進(jìn),對(duì)混凝土泵車的要求也越來(lái)越高,混凝土泵車朝著大臂長(zhǎng)、智能化、化的方向發(fā)展,而混凝土泵車臂架作為澆注混凝土的執(zhí)行機(jī)構(gòu),對(duì)臂架結(jié)構(gòu)的性能也提出了更高的要求。故臂架的性能與性將直接影響整車的性能。本文針對(duì)50、60、75米三種規(guī)格的大臂長(zhǎng)混凝土泵車進(jìn)行有限元計(jì)算及結(jié)構(gòu),對(duì)今后大臂長(zhǎng)混凝土泵車的臂架結(jié)構(gòu)有限元計(jì)算及結(jié)構(gòu)具有指導(dǎo)意義。首先,對(duì)混凝土泵車臂架有限元模型建立以及系列臂架全工況計(jì)算程序編寫。在對(duì)臂架有限元建模時(shí)需進(jìn)行原模型幾何簡(jiǎn)化處理、有限元網(wǎng)格劃分、有限元模型屬性賦予等工作;通過(guò)DOS及APDL語(yǔ)言編寫的全工況計(jì)算程序,可實(shí)現(xiàn)自動(dòng)生成工況,模型自動(dòng)組裝、載荷及邊界自動(dòng)施加、計(jì)算及計(jì)算結(jié)果提取的功能,通過(guò)計(jì)算程序可實(shí)現(xiàn)全工況結(jié)構(gòu)靜力有限元計(jì)算及結(jié)果數(shù)據(jù)處理。其次,對(duì)該系列泵車臂架結(jié)構(gòu)進(jìn)行基于ANSYS的剛度、強(qiáng)度計(jì)算。