四川廣元水庫閘門在線啟閉機鑄鐵閘門操作規范
水庫閘門閘門外力造成局部閘門變形或損壞處理:鋼板、型鋼或焊縫局部損壞或開裂時,可進行補焊或更換新鋼材,但補焊所使用的鋼材和焊條必須符合原設計的要求,的門葉變形的,應現將變形部位矯正,然后進行必要的加固。
水庫閘門閘門應在出廠前進行整體組裝,出廠前應做空載模擬試驗。
水庫閘門鑄鐵閘門運行工作時,應避免停留在易發生振動的開度上。
如果是多孔鑄鐵閘門同時開啟時,應由中間孔依次向兩邊對稱開啟,關閉時由兩邊向中間對稱依次關閉。
開機啟閉前,應先檢查絲桿所處位置,電機、變速箱、皮帶等有無異常,確認正常后,再通電啟閉,并將調度人、操作人、啟閉目的、設備檢查情況、開機時間填寫在《啟閉機鑄鐵閘門運行記錄》上。
鑄鐵閘門泄水期間,要注意上、下游水位變化及水流狀態,同時要注意有無船只或者其他漂浮物臨近提前,防止可能出現的撞擊鑄鐵閘門事件和其他危險狀況。
運行簡單,運行費用,但方型啟閉機鑄鐵閘門的造價比鋼閘門略高一些。
水庫閘門鑄鐵閘門金屬結構防腐工藝中,表面處理的主要目的是使涂料或金屬噴鍍層與金屬結構表有良好的附著力。
安裝在淡水中的鑄鐵閘門,采用金屬噴鍍腐時,所采用的金屬一般是選用鋅,而安裝在海水中則選用鋁、鋁合金或鋁基合金。
鑄鐵閘門運行阻力主要因素:鑄鐵閘門運行阻力的主要因素是水封和支承行走裝置的阻力,阻力受表面的狀態影響而變化。此外,門葉或柵體的傾斜,泥沙的積淤,門操或柵槽內等所引起的卡阻,以及埋設部件結冰等都會使運行阻力大大,動水中操作的啟閉機,運行阻力的大小還與閘門開度和攔污柵堵塞程度而變化的動水壓力有關。
四川廣元水庫閘門在線閘門啟閉機各部位主要性能
水庫閘門注意鑄鐵閘門啟閉機絲桿是否按要求的方向進行,電機、變速箱運行是否良好,變速箱與絲桿轉輪是否同步運動。
啟閉中若中途停電,應將倒順開關置于空檔的位置并拉閘斷電后,再卸掉皮帶以手動啟閉。
鑄鐵閘門表面附著物、泥沙、污垢、雜物等應定期,閘門的連接堅固件應保持牢固。
鑄鐵閘門門葉構件和面板銹蝕處理:水庫閘門閘門門葉構件銹蝕嚴重的,一般可采用加強梁格為主的加固,面板銹蝕減薄后,在較嚴重的部位,可補焊新鋼板加強。新鋼板的焊接縫應在梁格部位。另外也可環氧樹脂粘合劑粘貼鋼板補強。
四川廣元水庫閘門在線弧形鋼閘門作為擋水泄水結構,因其埋件少、水流順暢,啟閉力小、運轉靈活等優點,在水利水電工程中廣泛的應用,保證其安全可靠的運行十分重要,因此,許多研究者采用可靠度理論對其安全性進行評價。然而,針對弧形鋼閘門這類復雜的空間結構,如何基于可靠度理論對其進行有效、準確的安全評估尤為重要。因此,基于水工鋼閘門可靠度以及弧門空間主框架結構布置形式的研究現狀,本文對弧門空間主框架結構的體系可靠度展開研究。本文主要研究工作及成果如下:,以往采用體系可靠度理論對弧門進行安全性評估時,由于計算的,多是針對某一主要構件進行可靠性分析,如主梁、支臂。將結構主要受力構件進行分離計算的難以準確對其安全性進行評價。基于此,為有效、準確評價弧門空間主框架結構的安全性,本文將隨機有限元與體系可靠度理論相結合,提出了可同時考慮結構三維空間效應、結構非線性特征以及多失效間相關性的體系可靠度計算。第二,采用本文提出的體系可靠度計算設計在現代結構設計中已經占有了重要的地位,它能使工程人員從眾多的方案中較為完善或的優設計,是虛擬設計和制造的重要環節,并貫穿于整個研發和生產。結構的拓撲是結構設計中富挑戰性的研究領域,至今還在不斷完善和發展中。本文依據有限元分析和結構拓撲的相關理論與步驟,利用成熟的結構,對弧形鋼閘門進行了的二維及三維拓撲,并通過對不同寬高比及弧門半徑的表孔閘門三維拓撲分析,初步了表孔弧形閘門結構形式的選擇范圍與各自合理布置參數的取值范圍,后參照結果對一實例進行了改進布置設計,使其在強度保持不變或有所加強的基礎上,剛度和自振特性加強。總結整個分析,主要取得了以下成果:(1)基于ANSYS拓撲功能對弧形鋼閘門進行了二維拓撲,在過弧門分為橫向框架與縱向框架,并分別進行了拓撲。在橫向框架內主要考察其主橫梁懸臂段的優拓撲參數,給出了不同弧門半徑與寬度比的主水資源的有效及利用離不開水利樞紐的建設,水利工程主要包括:擋水建筑物,取水建筑物,泄水建筑物。擋水建筑物主要用以攔截水流,形成水庫或雍高水位,如堤防,水閘,攔水壩等。取水建筑物即取水、引水的主要水利設施,如明渠,進水閘,灌溉渠首等。泄水建筑物主要用以、排沙、放空水等,如泄水閘,泄水隧洞,河岸溢洪道等。在諸多水利樞紐中,取水建筑物的作用是顯而易見的,尤其對于一些電站,引水建筑物能力的強弱直接決定著電站發電能力及電站壽命。根據發電、灌溉、供水的不同需求,從河流引水時,所修建的取水樞紐也各不相同。此次論文主要采用物理模擬的,對某一典型河道中引水中的引水明渠進行分析與探討。得出此類渠道的引水與排沙能力范圍。針對此次研究內容及目的,試驗主要驗證的是圍繞渠道的清水試驗和泥沙試驗進行。清水試驗中不考慮泥沙淤積的影響。在確保該河道生態流量需求的前提下,此時引水建筑物的布置及渠道引水能力基本可以下游電站取水需求偏心鉸弧形閘門主要是用于高水頭的新型閘門,由于技術難度大,可借鑒的分析資料很少,設計人員在對其進行結構設計和分析計算時會遇到許多難題。閘門設計的主要是將各構件簡化成平面桿件,采用結構力學計算,但這種不能反映出閘門的空間整體工作性能。本文基于大型通用ANSYS,結合實際工程九甸峽偏心鉸弧形閘門所涉及的關鍵問題,分析了偏心鉸弧形閘門的受力特點和工作,建立了三維結構模型,并對弧形閘門進行靜、動力分析和設計研究。具容如下:1.研究選擇了基于ANSYS的能反映閘門各構件真實工作狀態的單元,根據偏心鉸弧形閘門的受力特點和工作,提出了偏心鉸弧形閘門的三維結構有限元模型。2.介紹了動力有限元的基本理論方程,根據結構和水體動力相互作用的原理,建立了水體和閘門耦合作用求解方程,研究了ANSYS的二次技術,利用ANSYS參數化設計語言(APDL)編制了基于ANSYS的動水壓力附加求解程序。3.根據九甸峽水庫閘門