涼山西昌水庫閘門型號鑄鐵閘門主要特點
水庫閘門鑄鐵閘門是水利工程中和水工建筑物的重要組成部分之一,水庫閘門它可以根據需要來封閉建筑物的孔口,也可全部或局部開啟孔口,用于調節上下游水位和流量,從而防洪水利項目、灌溉水利項目、供水水利項目、發電水利項目、通航水利項目等效益,還可用于排除漂浮物、泥沙、冰塊等作用,或者為相關建筑物和設備的檢修提供了必要條件。鑄鐵閘門一般設置安裝在取水輸水建筑物的進、口等咽喉要道,通過鑄鐵方閘門可靠地啟閉來發揮它們的功能與效益及建筑物的。設計鑄鐵方閘門必須有先后的步驟,水庫閘門我公司的鑄鐵方閘門設計人員首先會對客戶提供的資料進行分析和閘門結構作一個的建議,在設計中小型閘門時,我們首先會對建筑物的適用工況和運行特點及其具體布置等進行了解。設計閘門要素指對鑄鐵閘門的荷載和運行條件進行研究分析,水庫閘門在閘門上下游不同水位工況的組合使用中,有時僅有上游一面的單向水頭,有時兼有上下游兩面的雙向水頭,有時候還需要考慮到工況波浪壓力和泥沙壓力等其它荷載,并且我們會根據鑄鐵方閘門的運行條件,在哪些水頭情況下只擋水而不開啟,在哪些水頭情況下需要進行啟閉,從而計算啟閉力和確定選用的啟閉機噸位,鑄鐵閘門的啟閉臺、檢修橫橋和掛勾尺寸和產品吊點數量等也是不容忽視的。在閘門結構選擇時,常需要預估鑄鐵閘門的總重量,以進行鋼材和鑄鐵閘門造價的估算。
水庫閘門導軌應按大工作水頭設計,其拉伸、壓縮和剪切強度的系數不小于5。在門板開啟到高位置時,其導軌的頂端應高于門板的水平中心線。
導軌可用螺栓(螺釘)與門框相接,或與門框整體鑄造。
水庫閘門密封座應分別置于經機加工的門框和門板的相應位置上,用與密封座相同材料制作的沉頭螺釘緊固。在啟閉門板中,不能變形和松動,螺釘頭部與密封座工作面一起精加工,其表面粗糙度不大于3.2 μm。
密封座工作表面不得有劃痕、裂縫和氣孔等缺陷。
密封座的板厚,應符合表4規定。
涼山西昌水庫閘門型號弧形閘門作為一種輕質薄壁結構,具有啟閉方便省力等特點被越來越廣泛的應用到水利工程中。但同時因為弧形閘門是薄壁輕質結構,在脈動水流荷載作用下容易發生流激振動,甚至會產生影響閘門安全運行的不良后果,威脅水利工程的安全運行。因此,加強對弧形閘門流激振動特性的研究仍然十分重要。對弧形閘門流激振動的研究主要采用原型觀測、水彈性模型試驗以及結構有限元模擬等。以往對弧形閘門的研究僅僅孤立的研究弧形閘門,然而,這樣忽略了弧形閘門、閘墩以及溢流壩之間的相互影響,同時忽略了相鄰多孔閘門同時運行時,相鄰閘孔閘門之間的相互影響。因此本文結合廣東樂昌峽水利樞紐工程溢洪道弧形閘門,利用水彈性模型試驗以及數值模擬的對溢流壩弧形閘門-閘墩耦合以及相鄰閘孔閘門閘墩耦合條件系流激振動特性進行計算研究。主要內容如下:(1)結合樂昌峽工程項目,根據水彈性模型試驗的原理以及要求,選擇材料制作弧形閘門水彈性模型進行試驗,并且對試驗所測的閘門荷載特性水工弧形鋼閘門在開啟、關閉和開啟一定的角度的當中,水工閘門會發生不同程度的振動現象。水工閘門的振動的程度在某些情況下會十分的嚴重,情況嚴重時會造成水工閘門的和臨近構筑物的一并。在目前的研究中,對于水工弧形鋼閘門振動問題的研究具有十分重要的現實意義。本文以某水電站洞中的一扇弧形鋼閘門為研究對象,采用流固耦合理論,利用附加法對其進行靜力分析、動力特性分析以及水體脈動壓力作用下的動力響應分析;通過數值模擬計算了水工閘門在背后有水、無水及水工閘門的不同開啟角度情況下的自振和振型特征,還有水工閘門的自振變化情況隨閘門開度變化的內在變化規律。本文的主要結論如下:(1)靜力分析結果顯示,水工閘門的橫梁以及縱梁的應力變化幅度相對較小,而且分布相對對稱。閘門的上下臂在受力方面比較均勻,桿件的應力分布無論從規律上看還是從大小上看比較相似,說明弧形閘門的結構形式布置是合理的。水工弧形閘門的總體結構變水工弧形鋼閘門由于其封閉面積大,啟閉方便,預埋件少,閘墩高度小等優點,被廣泛的應用于水工建筑物中。鋼閘門的設計采用平面體系法或空間體系法,的鋼閘門傳力路徑不夠合理,造成結構自重過大,耗費大且不利于操作。此外,實際工程中很多鋼閘門的形式為結構失穩,多歸因于設計的不足。結構拓撲是一種新結構理論,可應用于概念性結構設計。本文嘗試給出一種新型的三支座大跨度水工弧門的設計方案:首先利用拓撲理論設計水工弧形鋼閘門各支撐部件的佳構型;其次,根據概念設計結果組裝工弧形鋼閘門整體模型;再次,利用尺寸技術,在保證弧形鋼閘門變形、應力、自振、屈曲因子等要求的前提下,結構自重;然后校核鋼閘門設計在其他工況下是否應力、應變、自振、屈曲因子等參數要求,確保結構安全運行;后利用渲染三支座弧形鋼閘門結構效果圖。在整個設計采用數值模擬展開建模在水庫水體的各種污染問題中,"富營養化"是發生普遍、危害大的水問題,尤其是有些在城市區域的水庫,因迅速的城市化受到嚴重的污染,富營養化嚴重,失去了作為飲用水水源的功能,例如北京曾經的飲用水水源的官廳水庫。顯然水庫的富營養化控制是水資源保護的重要措施和目標之一。水體富營養化是指水體接納過量的氮、磷等營養性,使水體中藻類以及其他水生生物異常繁殖,水體度和溶解氧變化,造成水庫水體惡化,從而使水庫生態和水功能受到阻礙和,危害水資源的利用。根據OECD(經濟合作與發展組織)的研究,80%的水體富營養化受磷元素的制約,10%的水體富營養化與氮、磷元素直接相關,其余10%的水體是氮與其它因素起作用。因此,各國開始采取措施向水體排放氮、磷,如1986年瑞士聯邦制定的"禁用含磷洗滌劑"法案正式生效。絕大部分水體的富營養化受磷元素的制約原因在于:水體中的氮磷之比(N/P)約在10-15之間時利于藻類繁殖