宜賓筠連縣水壩閘門系列進行閘門形式選擇時,水壩閘門需要根據閘門工作性質、設置位置、運行條件閘孔跨度、啟閉力和工程造價等,結合水壩閘門閘門的特點,參照已有的運行實踐經驗,通過技術經濟比較確定。其中平面閘門和弧形閘門是最常采用的門形。大、中型露頂式和潛沒式的工作閘門大多采用弧形閘門,高水頭深孔工作閘門尤為常用弧形閘門。當用作事故閘門和檢修閘門時,大多采用平面閘門。水壩閘門工作閘門前常設置檢修閘門和事故閘門。對高水頭泄水工作閘門由于經常作動水操作或局部開啟,應設法減少水壩閘門閘門振動和空蝕現象,改善水壩閘門閘門水力條件,按不同的部件考慮動力的影響,并對門體的剛度和動力特征進行分析研究。對門葉和埋件的制造、安裝精度都應嚴格控制,當門槽邊界流態復雜或體形特殊時,除需參考已有運行的成功試驗,還應通過水工模型試驗解決可能發生的振動、空蝕問題,以選定合適的門槽體形。
宜賓筠連縣水壩閘門系列活動部分包括面板梁系等稱重結構、支承行走部件、導向及止水裝置和吊耳等。埋件部分包括主軌、導軌、鉸座、門楣、底檻、止水座等,它們埋設在孔口周邊,用錨筋與水工建筑物的混凝土牢固連接,分別形成與門葉上支承行走部件及止水面,以便將門葉結構所承受的水壓力等荷載傳遞給水工建筑物,并獲得良好的閘門止水性能。啟閉機械與門葉吊耳連接,以操作控制活動部分的位置,但也有少數閘門借助水力自動控制操作啟閉。
水壩閘門閘門用于關閉和開放泄(放)水通道的控制設施。水工建筑物的重要組成部分,可用以攔截水流,控制水位、調節流量、排放泥沙和飄浮物等。
水壩閘門水利工程中常采用單個或若干個不同作用、不同類型的建筑物來調控水流,以滿足不同部門對水資源的需求。這些為興水利、除水害而修建的建筑物稱水工建筑物。控制和調節水流,防治水害,開發利用水資源的建筑物。實現各項水利工程目標的重要組成部分。 施工圖設計為工程設計的一個階段,在初步設計、技術設計兩階段之后。這一階段主要通過圖紙,把設計者的意圖和全部設計結果表達出來,作為施工制作的依據,它是設計和施工工作的橋梁。對于工業項目來說包括建設項目各分部工程的詳圖和零部件,結構件明細表,以用驗收標準方法等。民用工程施工圖設計應形成所有專業的設計圖紙:含圖紙目錄,說明和必要的設備、材料表,并按照要求編制工程預算書。施工圖設計文件,應滿足設備材料采購,非標準設備制作和施工的需要。
宜賓筠連縣水壩閘門系列施工圖設計為工程設計的一個階段,在技術設計之后,兩階段設計在初步設計之后。這一階段主要通過圖紙,把設計者的意圖和全部設計結果表達出來,作為施工制作的依據,它是設計和施工工作的橋梁。對于工業項目來說包括建設項目各分部工程的詳圖和零部件,結構件明細表,以用驗收標準方法等。
宜賓筠連縣水壩閘門系列隨著水資源綜合利用思想的發展、落實和整體觀點的興起,水資源利用經歷了從單一工程單一用途向諸多工程協調運行共同完成多項任務的轉變,這使得水資源復雜性特征得日益凸顯。加之我國大批水庫群和供排水網工程的相繼建設,之前基于單庫調度圖的水庫調度規則和原有供排調度理論難以水庫群梯級化和供排網絡化的現實需求,迫切需要建立一套更為完善的水資源分析和調度理論體系。基于此,本文選取水資源中較具代表性的供水水庫群、跨流域調水水庫群和農田流域排水作為研究對象,分別對供水水庫群的供水規則、分水規則、調水規則和配水規則的表述形式、模型構建和求解以及農田流域排水調度運行進行研究,取得了一定研究成果,具體包括如下幾方面內容:對水資源調度理論研究背景、意義進行概述,著重對作為本文研究對象的供水水庫群、跨流域調水水庫群和農田流域排水的調度研究現狀進行評述,在總結現有研究成果的基礎上弧形鋼閘門被廣泛的應用于水工建筑物中,由于其結構和工作條件的復雜性,使得其在工程運用中存在著諸多安全性問題。對弧形閘門結構進行動力特性、流激振動方面的研究具有重要的工程價值和理論意義。本文基于這些方面的問題,以龍灘底孔弧形閘門為背景,研究了弧形閘門的動力特性和流激振動問題,研究手段以模型試驗和有限元計算分析相結合。用水力學模型試驗了作用在弧形閘門上的脈動壓力數據,研究了弧形閘門上的動水壓力特性并得出一些普遍規律:在水彈性閘門模型上了各種工況下各測點的靜應力、動應力、自振、加速度,研究了閘門上靜應力的分布規律,弧形閘門的自振特性和動力響應。用ANSYS建立了龍灘弧門有限元模型,用有限元對弧門進行了靜力計算,并與靜力試驗結果對比,驗證了兩種的可靠性,并進一步研究了弧形閘門主要構件的應力分布規律和變形狀況。弧形閘門的流固耦合問題是研究閘門動力特性的一個難點。Westergaard(1933年)曾研究過地震時.弧形鋼閘門是水工建筑物中運用廣泛的門型之一。但閘門在啟閉或局部開啟時,甚至在關閉擋水時,常常產生振動,振動有時會達到相當嚴重的地步,從而可能引起閘門的動力或某些構件的動力失穩。因此,弧形閘門的動力問題一直屬于閘門設計和運行中一個需要解決的重要問題。弧形鋼閘門的失事往往是由于支臂在動力荷載作用下喪失所致。實測結果表明,將柱(支臂)按兩端鉸接壓桿計算的自振值,與實測值很接近。因此將弧門柱視為處于空氣中的兩端鉸接壓桿,在縱向力(由弧門門葉和主梁傳來的動水壓力)作用下進行動力分析,基本能反映弧門柱的主要工作特性。本文在對平面剛架性分析的基礎上,根據弧門主框架柱的柱端約束條件,把水體對閘門面板的作簡化為一個周期性變化的簡諧荷載,根據彈性體系動力理論,分析了兩端鉸接斜桿在周期性變化的簡諧荷載作用下的動力性,找出影響因素與其動力特性的關系。經過計算和分析,得出了一些有價值的結論。隨著我國大型水利樞紐工程的不斷修建,高壩大庫的增多,相應泄水建筑物的動力性能日益為工程界廣泛關注。尤其是修建在地震多發和高烈度地區的高壩,在偶發的地震荷載作用下它們易產生;泄水建筑物(包括閘門)的結構和工作條件相對復雜,易在工程運用中出現流激振動問題。因此開展高壩及泄水建筑物動力安全研究,對在建和擬建的高壩抗振性能及避免振動,確保安全具有重要的理論意義和實用價值。本文以工程泄水建筑物為研究對象,將動力數值計算與原型試驗模態分析技術相結合,對工程壩段的自振特性和地震反應進行了研究;對深孔弧形閘門的自振特性、水流脈動壓力特性以及水流激勵閘門振動的響應特性等問題進行了研究。通過原型動力試驗觀測和分析了壩段及深孔弧形閘門的自振特性,并研究了自振特性的影響因素;量測和分析了目前水位下的水流脈動壓力和弧門的振動加速度響應。采用動力有限元研究了深孔弧形閘門自振特性受水流附加、邊界條件及開度變化的的影響,.