優(yōu)質(zhì)商家x雅安雨城河道閘門(mén)公司鑄鐵閘門(mén)檢驗(yàn)
河道閘門(mén)鑄鐵閘門(mén)密封面間隙檢驗(yàn)
在鑄鐵閘門(mén)的門(mén)板與門(mén)框密封座的結(jié)合面,必須外來(lái)雜物和油污,將鑄鐵閘門(mén)全閉后放平。在門(mén)板上無(wú)外加荷載的情況下,用的塞尺沿密封的結(jié)合面測(cè)量間隙,其值不大于0.1mm,才能合格。
裝配檢驗(yàn)
河道閘門(mén)將鑄鐵閘門(mén)的門(mén)板在門(mén)框內(nèi)入座,作全啟全閉往復(fù),檢查門(mén)板在全啟全閉時(shí)的位置、楔緊面的楔緊狀況和門(mén)板在導(dǎo)向槽內(nèi)的間隙。用鋼尺和塞尺等工具分別進(jìn)行測(cè)量。
鑄鐵閘門(mén)滲漏試驗(yàn)
鑄鐵閘門(mén)的密封面應(yīng)任何污物,不得在兩密封面間涂抹油脂。將鑄鐵閘門(mén)全閉,使門(mén)框孔口向上,然后在門(mén)框孔口內(nèi)逐淅注入清水,以水不溢出為限,其密封面的滲水量應(yīng)不大于1.25L/min·m。
河道閘門(mén)鑄鐵閘門(mén)全壓泄漏試驗(yàn)
將鑄鐵閘門(mén)安裝在試驗(yàn)池內(nèi)或現(xiàn)場(chǎng)作全壓試驗(yàn),采用計(jì)量檢測(cè)密封面的泄漏量,其值應(yīng)不大于1.25L/min·m。
河道閘門(mén)鑄鐵閘門(mén)出廠檢驗(yàn)
每臺(tái)鑄鐵閘門(mén)必須經(jīng)制造廠檢驗(yàn)部門(mén)按本檢驗(yàn),并簽發(fā)產(chǎn)品檢驗(yàn)合格證,方可出廠。訂貨單位有權(quán)按本的有關(guān)規(guī)定對(duì)產(chǎn)品進(jìn)行復(fù)查,抽檢量為批量的20%。但不少于1臺(tái)且不多于3臺(tái)。抽檢結(jié)果如有1臺(tái)不合格時(shí)應(yīng)加倍復(fù)查,如仍有不合格時(shí),訂貨單位可提出逐臺(tái)檢驗(yàn)或拒收并更換合格產(chǎn)品。溢洪道閘門(mén)水力計(jì)算
河道閘門(mén)溢洪道閘門(mén)是水庫(kù)樞紐中的重要建筑物,水利項(xiàng)目重要的防洪設(shè)備,一般是設(shè)在大壩的一側(cè),當(dāng)水庫(kù)里水位超過(guò)限度時(shí),水就從溢洪道向下游,防止水壩被毀壞。為使水力計(jì)算與工程特性相一致,正確選用計(jì)算公式十分重要,主要由以下計(jì)算:
河道閘門(mén)控制段的匯流計(jì)算:可根據(jù)“溢流堰水力計(jì)算設(shè)計(jì)規(guī)范”建議的計(jì)算,同時(shí)正確選用流量系數(shù)時(shí)并使其與選用的堰型相一致。
引流段的水力計(jì)算:可采取自下游控制斷面向上游反推求水面曲線的進(jìn)行,引流段進(jìn)口處端須先計(jì)算水位壅高,才能求得時(shí)的正確庫(kù)水位。
消能設(shè)施的水力計(jì)算:采取底流式消能可以采用A-C:巴什基洛娃圖表計(jì)算。
泄流段陡槽水力計(jì)算:推求陡槽段水面曲線的較多,如陡槽底寬固定不變時(shí),可采用BⅡ型降水曲線或用查爾諾門(mén)斯基計(jì)算;對(duì)底寬漸變的陡槽段則可用查氏分段詳算。
由于水流的沖擊、摻氣和槽內(nèi)水流波動(dòng)很大,流態(tài)十分復(fù)雜,故計(jì)算十分困難,因此對(duì)于重要的大中型水庫(kù)其側(cè)槽式溢洪道設(shè)計(jì)需依據(jù)水工模型試驗(yàn)來(lái)確定其相應(yīng)尺寸。
優(yōu)質(zhì)商家x雅安雨城河道閘門(mén)公司隨著我國(guó)水電事業(yè)的迅速發(fā)展和工業(yè)制造水平的顯著,水利水電工程樞紐朝著高水頭量方向發(fā)展,其咽喉調(diào)節(jié)結(jié)構(gòu)--弧形鋼閘門(mén)的水頭、門(mén)高及面積越來(lái)越大,如五強(qiáng)溪水利樞紐表孔弧形門(mén)孔口面積已達(dá)437m~2(19m×23m)。的弧形閘門(mén)的支臂形式有二支臂和三支臂結(jié)構(gòu),前者雖然制造加工簡(jiǎn)單,但整體剛度差,內(nèi)力及構(gòu)件截面尺寸大;后者雖了整體剛度,但在相同材料用量情況下三支臂框架結(jié)構(gòu)的性較差,且常因動(dòng)力性差事故頻發(fā)。拓?fù)溲芯苛嘶¢T(mén)樹(shù)狀柱的概念設(shè)計(jì),表明了其合理的傳力路徑。樹(shù)狀結(jié)構(gòu)作為新穎的仿生結(jié)構(gòu)形式在建筑結(jié)構(gòu)中廣泛應(yīng)用,其傳力路徑明確、承載能力高、支撐覆蓋范圍廣、能有效地減小柱的計(jì)算長(zhǎng)度、可形成較大的支撐空間,這些特性都與大型水工弧形閘門(mén)的結(jié)構(gòu)性能要求非常吻合。結(jié)合大中型弧形閘門(mén)合理結(jié)構(gòu)布置的研究成果,可以推斷大型水工弧門(mén)的合理結(jié)構(gòu)形式應(yīng)為樹(shù)狀柱支承井字梁的空間框架結(jié)構(gòu),其在傳力路徑、性與經(jīng)濟(jì)性方面.弧形閘門(mén)作為水工建筑物中的工作閘門(mén),對(duì)于水工建筑物的結(jié)構(gòu)安全起到重要的作用;⌒伍l門(mén)的設(shè)計(jì),要做到安全可靠、技術(shù)先進(jìn)、經(jīng)濟(jì)合理。按照現(xiàn)行的弧形閘門(mén)設(shè)計(jì)規(guī)范設(shè)計(jì)閘門(mén)時(shí),由于對(duì)弧形閘門(mén)空間整體結(jié)構(gòu)的忽略,在設(shè)計(jì)時(shí)整體設(shè)計(jì)過(guò)于保守,材料性能未能充分發(fā)揮。設(shè)計(jì)是一種新的設(shè)計(jì),它是將原理和計(jì)算機(jī)技術(shù)相結(jié)合,從大量設(shè)計(jì)方案中找出的設(shè)計(jì)方案。本文利用設(shè)計(jì)的,對(duì)弧形閘門(mén)進(jìn)行結(jié)構(gòu),尋找佳設(shè)計(jì)方案,以設(shè)計(jì)的效率和。本文以弧形閘門(mén)結(jié)構(gòu)為研究對(duì)象,在深入學(xué)習(xí)研究遺傳算法及其結(jié)構(gòu)的原理的基礎(chǔ)上,將改進(jìn)遺傳算法、有限元理論、參數(shù)化建模技術(shù)、有限元二次技術(shù)相結(jié)合,利用Visual Basic建立弧形閘門(mén)結(jié)構(gòu),該可以實(shí)現(xiàn)自動(dòng)調(diào)用進(jìn)行弧形閘門(mén)參數(shù)化建模,并對(duì)弧形閘門(mén)進(jìn)行結(jié)構(gòu)截面和結(jié)構(gòu)尺寸。具體為首先使用設(shè)計(jì)在現(xiàn)代結(jié)構(gòu)設(shè)計(jì)中已經(jīng)占有了重要的地位,它能使工程人員從眾多的方案中較為完善或的優(yōu)設(shè)計(jì),是虛擬設(shè)計(jì)和制造的重要環(huán)節(jié),并貫穿于整個(gè)研發(fā)和生產(chǎn)。結(jié)構(gòu)的拓?fù)涫墙Y(jié)構(gòu)設(shè)計(jì)中富挑戰(zhàn)性的研究領(lǐng)域,至今還在不斷完善和發(fā)展中。本文依據(jù)有限元分析和結(jié)構(gòu)拓?fù)涞南嚓P(guān)理論與步驟,利用成熟的結(jié)構(gòu)ANSYS,對(duì)弧形鋼閘門(mén)進(jìn)行了的二維及三維拓?fù)?并通過(guò)對(duì)不同寬高比及弧門(mén)半徑的表孔閘門(mén)三維拓?fù)浞治?初步了表孔弧形閘門(mén)結(jié)構(gòu)形式的選擇范圍與各自合理布置參數(shù)的取值范圍,后參照結(jié)果對(duì)一實(shí)例進(jìn)行了改進(jìn)布置設(shè)計(jì),使其在強(qiáng)度保持不變或有所加強(qiáng)的基礎(chǔ)上,剛度和自振特性加強(qiáng)?偨Y(jié)整個(gè)分析,主要取得了以下成果:(1)基于ANSYS拓?fù)涔δ軐?duì)弧形鋼閘門(mén)進(jìn)行了二維拓?fù)?在過(guò)弧門(mén)分為橫向框架與縱向框架,并分別進(jìn)行了拓?fù)。在橫向框架內(nèi)主要考察其主橫梁懸臂段的優(yōu)拓?fù)鋮?shù),給出了不同弧門(mén)半徑與寬度比的主水工弧形鋼閘門(mén)由于結(jié)構(gòu)輕巧,操作方便,了廣泛的應(yīng)用。但同時(shí)也因?yàn)閯偠取⒆枘嵝。菀渍駝?dòng);⌒武撻l門(mén)在側(cè)止水漏水或失效和下游淹沒(méi)出流的小開(kāi)度組合情況下,將發(fā)生強(qiáng)烈的自激振動(dòng)。對(duì)這種自激振動(dòng)采用水力學(xué)條件和結(jié)構(gòu)并不能地閘門(mén)的強(qiáng)烈振動(dòng),而且這種只能在閘門(mén)建造前應(yīng)用。智能材料的發(fā)展和振動(dòng)控制技術(shù)的運(yùn)用,為解決閘門(mén)的強(qiáng)烈自激振動(dòng)問(wèn)題提供了可能和新的途徑,特別是對(duì)已建閘門(mén),意義更大。本文主要致力于尋求一種能進(jìn)一步解決閘門(mén)自激振動(dòng)問(wèn)題的有效控制裝置和控制策略。本文以某水利樞紐的導(dǎo)流底孔弧形鋼閘門(mén)為研究背景,根據(jù)簡(jiǎn)化三維模型和模擬的時(shí)程荷載,對(duì)MR智能阻尼器用于弧形閘門(mén)結(jié)構(gòu)的流激振動(dòng)反應(yīng)減振控制進(jìn)行了多種智能半控制研究。本文首先基于三維空間有限元模型的動(dòng)力分析建立了弧形閘門(mén)結(jié)構(gòu)動(dòng)力等效的三維多度集中簡(jiǎn)化模型,并利用簡(jiǎn)化模型進(jìn)行了結(jié)構(gòu)的動(dòng)力特性和振動(dòng)反應(yīng)分析。兩種模型的動(dòng)力特性和振動(dòng)反應(yīng)比較表明河道閘門(mén)