眉山東坡河道閘門鑄鐵閘門結構主要部件簡介:產品主要由啟閉機,螺桿,門框,門體,止水橡膠,吊耳及銷軸等部件組成,產品密封材料采用三元乙丙橡膠,具有性能良好,經久耐磨的特點,河道閘門閘門產品主要是通過螺桿拉動操作工作,具有結構科學簡單,安裝和使用方便,性能可靠的特點。河道閘門鑄鐵閘門安裝前注意事項:安裝前首先要檢查豎框與橫框之間、閘板與閘板之間(指多塊閘板組合的閘門)的連接螺絲和固定鋼板,是否在運輸裝卸和吊裝中引起松動,接茬處是否存在錯牙,如果有這些情況編制成一個平面,然后上緊螺栓,在吊裝
河道閘門鑄鐵閘門安裝注意事項,河道閘門鑄鐵閘門安裝時是將整體豎入閘槽,在兩邊立框的下面墊上墊塊(嚴禁墊下橫梁),河道閘門兩立框用手動葫蘆和斜拉立穩,將鑄鐵閘門找直找平,各地腳孔內串上地腳螺栓,支好鑄鐵閘門門框進行一期澆注,必須注意混凝土不能埋上閘框,使閘框底平面貼在水泥墻上,當混凝土凝固后,再對閘框進行,擰緊地腳螺栓,對鑄鐵閘門進行時,在鑄鐵閘門背面的閘板和閘框的封水處,用塞尺對四周進行間隙測量,不能有大于0.3mm的縫隙,如果有就在該處閘框與混凝土墻間強塞鐵片,間隙,然后至四周間隙都在0.3mm以下,再進行二期澆注,混凝土澆筑位置在閘框埋入二分之一的地方
眉山東坡河道閘門鑄鐵閘門安裝完畢后注意事項:主要是加產品結構固物,在出廠前,為使閘板、閘框貼合緊湊,安裝后間隙,2m以上的鑄鐵閘門在上下橫框上安裝了6-20個勾板壓鐵,立框的檔板上了頂絲,注意在間隙后,將勾板壓鐵和頂絲拆除,才能進行產品啟閉操作。鋼閘門由于其門體活動部分重量會較輕,采用的啟閉機噸位可以相對較小。河道閘門鋼閘門均采用焊接生產,以保證產品。河道閘門鋼制閘門是由門框與門體安裝在水下部位,導軌則裝在門框上端,保證了門體工作時,沿門框,導軌在一定行程內作上、下垂直方向往復運動。
眉山東坡河道閘門鑄鐵方閘門工作時是利用螺桿啟閉機使螺母或螺桿蝸輪作運動,帶動傳動螺桿工作,使門體相對對門框作上下往復運動,同時,楔緊裝置運用楔塊可緊可松的工作原理,使門體下降至設定極限位置時,門框、門體密封座面能有效地貼合,起到截水之作用。鑄鐵方閘門在水下工作,為操作方便,在水下設置了啟閉裝置,由于產品標高不相一致,所以傳動螺桿的長短,軸導架的設置與否,視其具體尺寸而定(詳情見本廠產品樣本)。吊耳、吊塊、銷軸主要用于傳動螺桿與門體連接,使門體作上、下往復運動的動力源來于螺桿啟閉機。門體向上全部打開時,水則疏通,反之,則為截止,如因工作需要調節水位時,也可半啟半閉,以達到疏通、截止、調節水位之目的。
電動操作,電動控制裝置,定位、操作輕巧、易實現自控和遠控4,力矩小,由于閘板重量輕,且閘板與道軌板之間阻力小,故操作力矩小。
眉山東坡河道閘門大壩安全評價指標體系、安全要素的權重、大壩運行中的風險、大壩安全遠程監控等大壩安全的一些主要問題進行了較為、深入的研究。主要研究內容如下:(1) 針對大壩安全性態分析評價的具體特點,給出了擬定大壩安全分析評價指標的原則和權重自身特性,并根據這些原則和權重特點,建立了一個普遍意義下的大壩安全分析指標權重體系。(2) 在深入研究層次分析法的基礎上,針對大壩指標權重的特點,應用模糊數學理論,建立了專家主觀賦權模型,并從專家意見的偏離程度及專家判斷權威性對專家主觀權重進行了修正;研究了主成分法及新型投影追蹤算法,并在準則下,建立了信息賦權整合模型;針對指標主客觀權重各自的不足及組合賦權法中沒有考慮權重隨機性的問題,對權重進行了融合處理,使得指標權重更客觀有效。(3) 應用改進層次分析法建立了大壩運行風險識別模型,研究并提出了大壩運行風險度的概念,在此基礎上,探討了基于實測資料的大壩運行風險度分析在對近年來國內外有關洞水力特性文獻總結分析研究的基礎上,本文通過物理模型試驗、理論分析等研究手段對平底底孔的水力特性進行了研究。通過1:30的大比尺模型試驗,對平底底孔明流段的摻氣減蝕設施進行了七個方案的對比試驗研究,提出了一種新型的平底下游加設貼坎的摻氣設施,地克服了平底洞摻氣設施存在的空腔回水問題,并通過減壓模型試驗對該摻氣設施設置的必要性進行了論證。通過理論分析對常規平底、常規底坡以及本文提出的平底下游加設貼坎三種摻氣設施的空腔回水特性進行了研究。結果表明,相比于常規平底摻氣設施,平底下游加設貼坎摻氣設施射流沖擊角較小,能有效地空腔回水,有的摻氣空腔,且通氣量等摻氣特性指標都有明顯。通過因次分析,得出了來流Fr和下游貼坎幾何尺寸是影響平底下游加設貼坎摻氣設施的空腔長度和通氣量主要因素,并通過試驗實測的回歸分析,得出了平底下游加設摻氣設施空腔長度和通氣量計算的公式。通過物理模型試驗,研究了底孔.. 水庫大壩安全監測對大壩的安全運行起著非常重要的作用,是評判大壩運行是否安全的有效。本文通過論述大壩安全監測的意義和必要性,結合廣州市科研條件建設項目,研究和設計出了本。其主要由現場硬件部分和終端部分組成,其中硬件部分主要是對水雨情數據進行采集和傳輸,部分主要是對采集到的數據進行存儲、、計算、分析和大壩險情評價。本文首先概述了大壩安全監測的目的和研究內容,結合國內外已有的相關技術,完成了的總體方案設計、硬件選型、通訊選擇和編制等。其中總體方案包括:設計原則、結構、、功能和流程等。通過對可靠性和易擴展性的考慮,后確定采用分布式數據采集。實時采集的滲壓、滲流、水位和位移等數據通過光纖傳至中控室主機后,交由部分處理,通過觀察界面中的實時數據、相應圖形和報表,實現對實時水雨情的監控和大壩險情的評判。本部分把平面圖形、三維可視化模擬圖形、水資源調度模型庫和. 疊梁門分層取水結構是一種友好型進水口,它不僅能夠電站發電引水的需求還能實現對生態的保護。JH水電站發電引水采用半圓型疊梁門分層取水進水口,體型設計較一般分層取水結構特殊,進流條件相對復雜。本次研究以JH水電站疊梁門進水口為背景,通過對疊梁門不同運行、不同引水流量下的斷面流速、流態分布、水頭損失等水力特性進行三維數值模擬研究并對分層取水進水口流量分配進行對比分析,計算結果可為電站的有效運行提供科學依據,也可為相關工程提供指導。本次研究通過對幾種不同的湍流模型進行比較,采用k-ε紊流數學模型,能夠的解決進水口各過流斷面近壁區水流流動的計算問題。研究結果表明:(1)半圓型疊梁門進水口與以往進水口體型設計有所不同,能夠有效擴大進流范圍,保證下泄水體進流平穩,進水口和疊梁門前均無不良流態,閘墩處無不良漩渦。(2)疊梁門門頂淹沒水深不足時門后豎井內產生吸氣漩渦;疊梁門上方大門頂流速分布在門頂底部;研究表明進水口設置