攀枝花仁和渠道閘門生沉陷或不均勻沉陷,閘室或翼墻等下沉、傾斜,甚至引起結構斷裂而不能正常工作。為此,對渠道閘門閘室和翼墻等的結構形式、布置和基礎尺寸的設計,需與地基條件相適應,盡量使地基受力均勻,并控制地基承載力在允許范圍以內,必要時應對地基進行妥善處理。對結構的強度和剛度需考慮地基不均勻沉陷的影響,并盡量相鄰建筑物的不均勻沉陷。此外,對水閘的設計還要求做到結構簡單、經濟合理、造形美觀、便于施工、,以及有利于綠化等。
渠道閘門閘址和閘檻高程的選擇 根據水閘所負擔的任務和運用要求,綜合考慮地形、 地質、 水流、泥沙、施工、和其他方面等因素,經過技術經濟比較選定。閘址一般設于水流平順、 河床及岸坡、 地基密實、抗滲性好、場地開闊的河段。閘檻高程的選定,應與過閘單寬流量相適應。在紐中,應根據樞紐工程的性質及綜合利用要求,統一考慮水閘與樞紐其他建筑物的合理布置,確定閘址和閘檻高程。
力設計
攀枝花仁和渠道閘門根據水閘運用和過閘水流形態,按水力學公式計算過流能力,確定閘孔總凈寬度。結合閘下水位及河床地質條件,選定消能。水閘多用,通過水力計算,確定消能的尺度和布置。估算判斷水閘投入運用后,由于閘上下游河床可能發生沖淤變化,引起上下游水位變動,從而對過水能力和消能防沖設施產生的不利影響。大型水閘的水力設計,應做驗證。防滲排水設計 根據閘上下游大水位差和地基條件,并參考工程實踐,確定地下輪廓線(即由防滲設施與不透水底板共同組成滲流區域的上部不透水邊界)布置,須沿地下輪廓線的滲流平均坡降和出逸坡降在允許范圍以內,并進行滲透水壓力和抗滲性計算。在滲逸面上應鋪設反濾層和設置排水溝槽(或減壓井),盡快地、安全地將滲水排至下游。兩岸的防滲排水設計與閘基的基本相同。結構設計 根據運用要求和地質條件,選定閘室結構和閘門形式,妥善布置閘室上部結構。分析作用于水閘上的荷載及其組合,進行閘室和翼墻等的抗滑計算、地基應力和沉陷計算,必要時,應結合地質條件和結構特點研究確定方案。對組成水閘的各部建筑物(包括閘門),根據其工作特點,進行結構計算。
攀枝花仁和渠道閘門1前言我國是水庫大壩多的之一。至2006年底,已建成各類水庫大壩85 849座,壩高15 m以上的大壩約1.8萬座,水庫總庫容約5 842億m3[1],而約有3萬多座水庫(占總數的36%,水利部門管轄)屬于病險水庫[2]。汛期發生較大洪水,這些水庫大壩可能發生危及安全的事故甚至潰決,將會嚴重影響下游公共安全,威脅生命、經濟與社會。如2007年4月19日,甘肅省高臺縣小海子水庫潰壩造成水庫工程本身和下游居民(受災人口1 018人)近200萬元的經濟損失;2007年7月26日16時20分,貴州省黔東南自治州丹寨縣馬頸坳水電站庫區擋水山體發生潰決,造成下游三都縣沿河三個鄉鎮受災,5人死亡、1人失蹤,經濟損失數千萬元。因此,水庫大壩安全問題一直是主管部門、部門和下游居民為關注的問題之一。在當今強調"以人為本"的治水理念下,切實做好水庫大壩安全工作,保障水庫大壩安全,大程度保障群眾生命安全,損失,編制并深入研病險水庫大壩風險分析和預警作為大壩安全的延續和加強,包括一系列的分析、評價和實施,主要包括病險水庫大壩隱患病害挖掘、風險分析、預警的架構、警兆辨識模型、降險減災及應急預案等。豐要研究內容如下:(1)研究分析了病險水庫大壩隱患病害的機理及成因,對可能失事的病害進行識別,挖掘出病險水庫大壩的實用失事集。并采用諾埃曼風險率的模型,提出一種定性和定量相結合的確定大壩風險率融合。(2)提出用ISODATA法和模糊綜合評判法對專家權重進行修正,估算了大壩風險度。借鑒國外發達可接受風險研究成果,從個人、社會、經濟和四方面研究了病險水庫大壩的可接受風險,提出適合我國國情的可接受風險指標。(3)構建了基于Web GIS的病險水庫大壩預警架構,在此基礎上,研究了預警指標的分類、預警指標篩選的條件和原則以及指標體系的構建。(4)研究了大壩風險預警中的警兆指標體系和確定,提出了土石壩和混凝土壩.